Zurück
Vor

Leslie Leben

Non-negative operators in Krein Spaces and rank one perturbations

Autor: Leslie Leben

ISBN: 978-3-86360-141-6

Seitenzahl: 116

Erscheinungsdatum: 15.08.2016

 

Print on Demand – bis zu 10 Werktage Lieferzeit!

17,20 € *
 
 
 
 
 

Produktinformationen "Non-negative operators in Krein Spaces and rank one perturbations"

The presented thesis addresses problems in perturbation theory of operators in Krein spaces and is settled in the area of functional analysis. We study the spectrum of a non-negative operator A in a Krein space (K, [·, ·]) under rank one perturbations in resolvent sense. The following two questions are answered: (i) How does the spectral multiplicity in a gap of the essential spectrum of A change under rank one perturbations? (ii) How does the Jordan structure at isolated eigenvalues of A change under rank one perturbations? More precisely, how does the number and the length of Jordan chains of A at a given eigenvalue change under a rank one perturbation? To show these results we use amongst others boundary triplets for symmetric operators in Krein spaces and associated Weyl functions, realisations of generalized Nevanlinna-, D0-, and D1-functions, and algebraic properties of Krein spaces.
 

Weiterführende Links zu "Non-negative operators in Krein Spaces and rank one perturbations"

Bücher in diesem Shop von Leslie Leben
 

Kundenbewertungen für "Non-negative operators in Krein Spaces and rank one perturbations"

 
Bewertungen werden nach Überprüfung freigeschaltet.

Bewertung schreiben

 
 
 
 
 
 
 

Die mit einem * markierten Felder sind Pflichtfelder.