Zurück
Vor

Holger Langenau

Best constants in Markov-type inequalities with mixed weights

Autor: Holger Langenau

ISBN: 978-3-944640-84-6

Seitenzahl: 115

Erscheinungsdatum: 01.04.2016

 

Print on Demand – bis zu 10 Werktage Lieferzeit!

10,80 € *
 
 
 
 
 

Produktinformationen "Best constants in Markov-type inequalities with mixed weights"

Markov-type inequalities provide upper bounds on the norm of the (higher order) derivative of an algebraic polynomial in terms of the norm of the polynomial itself. The present thesis considers the cases in which the norms are of the Laguerre, Gegenbauer, or Hermite type, with respective weights chosen differently on both sides of the inequality. An answer is given to the question on the best constant so that such an inequality is valid for every polynomial of degree at most n. The demanded best constant turns out to be the operator norm of the differential operator. The latter conicides with the tractable spectral norm of its matrix representation in an appropriate set of orthonormal bases. The methods to determine these norms vary tremendously, depending on the difference of the parameters accompanying the weights. Up to a very small gap in the parameter range, asymptotics for the best constant in each of the aforementioned cases are given.
 

Weiterführende Links zu "Best constants in Markov-type inequalities with mixed weights"

Bücher in diesem Shop von Holger Langenau
 

Kundenbewertungen für "Best constants in Markov-type inequalities with mixed weights"

 
Bewertungen werden nach Überprüfung freigeschaltet.

Bewertung schreiben

 
 
 
 
 
 
 

Die mit einem * markierten Felder sind Pflichtfelder.