Zurück
Vor
Heat kernel estimates based on Ricci curvature integral bounds
 
 
 

Christian Rose

Heat kernel estimates based on Ricci curvature integral bounds

Autor: Christian Rose

ISBN: 978-3-96100-032-6

Seitenzahl: 128

Erscheinungsdatum: 28.09.2017

 

Print on Demand – bis zu 10 Werktage Lieferzeit!

13,60 € *
 
 
 
 
 

Produktinformationen "Heat kernel estimates based on Ricci curvature integral bounds"

Any Riemannian manifold possesses a minimal solution of the heat equation for the Dirichlet Laplacian, called the heat kernel. During the last decades many authors investigated geometric properties of the manifold such that its heat kernel fulfills a so-called Gaussian upper bound. Especially compact and non-compact manifolds with lower bounded Ricci curvature have been examined and provide such Gaussian estimates. In the compact case it ended even with integral Ricci curvature assumptions. The important techniques to obtain Gaussian bounds are the symmetrization procedure for compact manifolds and relative Faber-Krahn estimates or gradient estimates for the heat equation, where the first two base on isoperimetric properties of certain sets. In this thesis, we generalize the existing results to the following. Locally uniform integral bounds on the negative part of Ricci curvature lead to Gaussian upper bounds for the heat kernel, no matter whether the manifold is compact or not. Therefore, we show local isoperimetric inequalities under this condition and use relative Faber-Krahn estimates to derive explicit Gaussian upper bounds. If the manifold is compact, we can even generalize the integral curvature condition to the case that the negative part of Ricci curvature is in the so-called Kato class. We even obtain uniform Gaussian upper bounds using gradient estimate techniques. Apart from the geometric generalizations for obtaining Gaussian upper bounds we use those estimates to generalize Bochner
 

Weiterführende Links zu "Heat kernel estimates based on Ricci curvature integral bounds"

Bücher in diesem Shop von Christian Rose
 

Kundenbewertungen für "Heat kernel estimates based on Ricci curvature integral bounds"

 
Bewertungen werden nach Überprüfung freigeschaltet.

Bewertung schreiben

 
 
 
 
 
 
 

Die mit einem * markierten Felder sind Pflichtfelder.